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1
Introduction to Symmetry

1.1 Symmetry in Nature

Symmetry is universal, fascinating, and of immense practical importance. As
human beings we have evolved a perception of symmetry that lies at the core
of our conscious life. Symmetries provide cues that help us relate to our envi-
ronment and guide our movements through the world. Everyone has a taste for
things that are in some way symmetrical or possess a pleasing deviation from
perfect symmetry. A highly paid supermodel will often have rather symmetrical
facial features. But a perfectly symmetrical face has an unnatural, androgynous
look, and rarely is this associated with great beauty or a memorable persona.
Perhaps the most perfect object we can imagine is a circle, yet dividing the
circumference by the diameter produces the irrational number π that we can
only symbolize. Perfect, unequivocal, symmetry, like perfect theory, eludes us
always.

Objects of the natural world universally exhibit some form of symmetry.
Despite an astonishing variety of shapes, all members of the animal kingdom
possess body architectures that can be sorted into only about 37 basic types. Al-
most all animals possess bilateral symmetry; they must eat, and to eat efficiently
two hands, grasping symmetrically, are better than one. Animals must move,
and to move efficiently it is essential to be balanced about the center of mass.
When asymmetric development does occur, it is invaribly associated with some
unusual, very specific adaptation, as in the case of the bottom-dwelling flounder
with both eyes on the same side of its head. The whorls and spirals of plant
organs produced by the response of an expanding growth surface to surrounding
mechanical constraints [1.1] have been the subject of scientific inquiry for cen-
turies. The nearly perfect spheres that fill the universe – stars, planets, moons,
and the like – are shaped primarily by gravitational forces, which act in a three-
dimensional universe where no one direction or position is distinguished from
another. Free space is homogeneous and isotropic. We marvel at the incredible

1
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2 1 Introduction to Symmetry

variety of delicate geometrical forms associated with the six-sided symmetry of
snowflakes or the regular crystalline structure of gems formed over millennia
by heat, pressure, and water, their shape a consequence of the forces that act on
an atomic scale according to the symmetries of the electronic outer shells that
participate in bonding. Anyone who studies fluid mechanics is struck by the aes-
thetic symmetry of shock wave patterns or bubbly flows or any of the myriad spi-
ral patterns that mark the vortical world that flows over, around, and through us.

There have been many attempts to quantify the relationship between sym-
metry and beauty. A fine example of this can be found in the fascinating work
of George David Birkhoff (1884–1944) [1.2], who was one of the preeminent
American mathematicians of the early 20th century and is generally credited
with developing the ergodic theorem in the kinetic theory of gases. Birkhoff
was originally motivated by the desire to identify what it was that made one
musical piece beautiful and another not. He felt that beauty had a universal
character and therefore it should be possible to quantify it mathematically, and
so he developed what he called the “aesthetic measure.” Ultimately he applied
this measure to a wide variety of objects – everything from musical pieces to
vases to floor tilings. Today such an attempt to categorize music seems
naive in view of the vast range of musical technique – everything from guitar
“resonant buzz” invented accidentally by country singer Marty Robbins (but
claimed by “Spirit in the Sky” Norman Greenbaum) to the patriotic screechings
of Jimi Hendrix to the asynchronous beat of Dave Brubeck. No simple measure
can cover it all.

Although the use of symmetries to categorize objects is interesting in its own
right, that is not the purpose of this text. Our main interest is in the symmetries
inherent in the physical laws that govern the natural world. Knowledge of these
symmetries will be used to enhance our understanding of complex physical
phenomena, to simplify and solve problems, and, ultimately, to deepen our
understanding of nature. The primary goal of this text is to develop the methods
of symmetry analysis based on Lie groups for the uninitiated reader and to
use these methods to find and express the symmetry properties of ordinary
differential equations, partial differential equations, integrals, and the solution
functions that they govern. The text is directed primarily at first- and second-
year graduate students in science and engineering, but it may also be useful to
advanced researchers who would like to gain some familiarity with symmetry
methods. The student is expected to be familiar with classical approaches to
the solution of differential equations, although the early chapters provide much
of the required background in terms that should be understandable to an upper-
level undergraduate.
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1.2 Some Background

My first encounter with Lie groups came while browsing in the GALCIT aero-
nautics library at Caltech in 1975. I ran across the book by Abraham Cohen
[1.3], first published in 1911. The first few chapters of this book give a very
lucid description of the concept of a Lie group and the idea of invariance under
a group. Cohen’s book makes interesting reading when one realizes that at the
time it was written, Sophus Lie’s ideas were still a brand-new development, yet
they were seen as important enough to warrant a full-blown textbook treatment.
In his 1906 treatise on The Theory of Differential Equations Andrew Forsyth
devotes several chapters to Lie groups and Bäcklund transformations. It is a fact,
however, that shortly thereafter, Lie’s ideas fell into obscurity and remained so
until soon after World War II. As researchers began to turn more and more
often to nonlinear problems and as the inherent importance of symmetries began
to be recognized, Lie’s ideas gained renewed interest.

The Lie algorithm used to analyze the symmetry of mathematical expres-
sions was developed to an advanced state through the pioneering efforts of
Ovsiannikov [1.5] and his students in the Soviet Union. In the United States,
Garrett Birkhoff [1.6] at Harvard the son of George Birkhoff played a key role
in bringing attention to Lie’s ideas by clarifying the relationship between group
invariance and dimensional analysis as applied to problems in fluid mechanics.
Fluid mechanics, governed as it is by nonlinear equations from which a rich
variety of simplified nonlinear and linear approximations can be derived, is an
especially fertile source of examples and applications of group theory.

During the same period, new ideas about the role of similarity solutions as
approximations to realistic complex physical problems were being developed
by Barenblatt and Zel’dovich [1.7] in the Soviet Union. By the late 1960s and
early 1970s the whole field was active again, and new applications of group
theory were being developed by a number of researchers, including Ibragimov
in the Soviet Union [1.8], Bluman and Cole at Caltech [1.9], Anderson, Kumei,
and Wulfman at the University of the Pacific [1.10], Chester at Bristol [1.11],
Harrison and Estabrook at the Jet Propulsion Laboratory [1.12], and many
others. Today group analysis, in one form or another, is the central topic of a
number of excellent textbooks, including Hansen [1.13], Ames [1.14], Olver
[1.15], Bluman and Kumei [1.16], Rogers and Ames [1.17], Stephani [1.18],
and most recently Ibragimov [1.19], Andreev et al. [1.20], Hydon [1.21] and
Baumann [1.22]. The valuable collection of results by workers around the world
contained in the CRC series edited by Ibragimov [1.23] gives testimony to the
achievements of the last half century or so. Today, symmetry analysis constitutes
the most important (indeed one might say the only) widely applicable method
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4 1 Introduction to Symmetry

for finding analytical solutions of nonlinear problems. The Lie algorithm can
be applied to virtually any system of ODEs and PDEs. Moreover the procedure
is highly systematic and amenable to programming with symbol manipulation
software. As a result, sophisticated software tools are now available for ana-
lyzing the symmetries of differential equations (References [1.24], [1.25],
[1.26]; see also the review of symbolic software for group analysis by Hydon
[1.21] and Hereman [1.27]).

1.3 The Discrete Symmetries of Objects

For more background on the importance of symmetry, particularly in the early
development of modern physics, I would recommend the works of the German–
American mathematical physicist Hermann Weyl (1885–1955), who formulated
the group-theoretic basis of quantum mechanics. In his monograph [1.28] Weyl
writes of the role of symmetry in science and art. Weyl was a student of David
Hilbert and a member of the famous group of German mathematicians at the
University of Göttingen, which broke up during the Nazi era prior to the start
of World War II and later re-formed as the nucleus of the Courant Institute
in New York. Finally, one of my favorite readings is Feynman’s discussion of
the role of symmetry in modern physics, which can be found in Chapter 52 of
Volume I of the Feynman Lectures on Physics [1.29].

Let’s begin with a widely accepted general definition of symmetry usually
attributed to Weyl.

Definition 1.1. An object is symmetrical if one can subject it to a certain
operation and it appears exactly the same after the operation. The object is
then said to be invariant with respect to the given operation.

The symmetry properties of an object can usually be expressed in terms of a set
of matrices each of which, when used to transform the various points composing
the object, leave it unchanged in appearance. To clarify the notion of symmetry
and its mathematical description, let’s examine the rotational and reflectional
symmetry of a snowflake.

1.3.1 The Twelvefold Discrete Symmetry Group of a Snowflake

Transparent ice crystals form around dust particles in the atmosphere when
water vapor condenses at temperatures below the freezing point. The water
molecule is an isosceles triangle composed of two hydrogen atoms bonded to
an oxygen atom at its apex with an angle of 104.5◦ between the bonds. The
attraction between the hydrogen atoms of each molecule and the oxygen atoms
of other molecules overcomes thermal motions, leading to the formation of
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Fig. 1.1. Hexagonal structure of ice crystals and snowflakes.

hydrogen bonds, which link molecules together. The symmetry properties of
the water molecule are such that if the formation temperature is below −14◦C,
each molecule bonds to four neighboring molecules in a repeating tetrahedral
arrangement with the oxygen atoms at the corners of the tetrahedron. The
tetrahedral structure gives rise to hexagonal rings of water molecules as shown
in Figure 1.1. These hexagons on the molecular scale are responsible for the
hexagonal symmetry of the ice crystal at macroscopic scales.

The exact structure of the ice crystal depends on its temperature history during
formation. Thus, because of the infinite variability of atmospheric conditions,
the shape of each snowflake is unique.

One final point before we begin: A snowflake is a three-dimensional object
with a front and back. Here we wish to study only the planar symmetry of a
face-on view, and so we consider the snowflake to be flat, existing entirely in a
two-dimensional world. By the way, the tendency for snowflakes to be nearly
flat is also explained by the crystal structure at the molecular level, which tends
to be composed of relatively weakly bound planar sheets.

Figure 1.1 is my best attempt to sketch a typical snowflake. Overall it looks
like a fairly symmetrical six-sided object. However, close inspection reveals a lot
of detailed imperfections in my drawing. In order to have a useful discussion of
the symmetry properties of the snowflake, we simply must accept the fact that we
can’t look at it too closely. We have to be willing to gloss over the imperfections
and agree that the six corners of the snowflake are indistinguishable. The labels
A, B, C, D, E, F are applied to the corners for reference purposes, but with
the convention that the labels do not compromise the property that the corners
themselves are indistinguishable.

This seemingly minor point is actually crucial and all-encompassing. It is
central to the methods used to test for symmetry. In principle, any real object in
all of its detail is completely devoid of symmetry. Therefore it is important to



P1: GBY/GIO P2: GBY/GIO QC: FQF/FGP T1: FQF

CB420-Cantwell CB420-01 January 17, 2002 18:45 Char Count= 0

6 1 Introduction to Symmetry

recognize that the symmetries that accrue to an object apply, not to the object
itself, but to its abstract representation. The moon is a sphere only when viewed
from a perspective that flattens all mountain ranges, mare, rocks, pebbles, etc.
Often it is the degree and manner in which a symmetry is broken that is of
paramount importance. Galileo’s great discovery in the seventeenth century
was that the moon is not a smooth sphere but is covered with craters whose
dimensions rival the largest geological features found on earth.

So it is the case today that the most important scientific questions are often
associated with peeling away symmetries or searching for new symmetries of
complex systems in order to reach a deeper understanding of the underlying
physics. One often asks: Which parameters in a physical problem are impor-
tant? Which ones are not? Occasionally, new physics is discovered when the
means is found to “fix” a broken symmetry. In the modern era, the most spectac-
ular example of this is the failure of Maxwell’s equations to preserve Galilean
invariance while preserving invariance under the puzzling Lorentz transforma-
tion. This led directly to Einstein’s theory of special relativity, the recognition
that time and space are connected, and the discovery that the speed of light is
a universal invariant for all observers. A more recent example that shook the
foundations of particle physics is the famous 1956 discovery by Lee and Yang
[1.30], [1.31] that parity is not conserved in beta decay.

1.3.1.1 Symmetry Operations

Now, let’s begin our study of the symmetries of a snowflake.
Suppose we rotate the snowflake by 30◦ (Figure 1.2). If we close our eyes

before the rotation, then open them afterwards, we can see that an operation has
been applied to the snowflake. The object is not left invariant, and the 30◦ rota-
tion does not qualify as a symmetry operation. There are in fact just six rotation
angles that leave the snowflake invariant: 60◦, 120◦, 180◦, 240◦, 300◦, and 360◦.
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Fig. 1.2. Counterclockwise rotation by 30◦.
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Fig. 1.3. Counterclockwise rotation by 120◦.

Now apply a rotation of 120◦ (Figure 1.3). In this case, there is no way we
can tell that the operation has taken place (remember that the labels are not
part of the object and tiny details are ignored). The snowflake is invariant, and
the rotation by 120◦ is a symmetry operation. We can express the rotational
symmetry of the snowflake mathematically as a transformation

x̃ = x cos θ − y sin θ,

ỹ = x sin θ + y cos θ.
(1.1)

where the (x, y) coordinates are oriented as shown in Figure 1.1 and the
parameter of the transformation, θ , can only take on the six discrete values
given above. It is convenient (though not necessary) to think of (1.1) as a map-
ping of points in a given space whose coordinate axes remain fixed, rather than
the usual interpretation as a rotation of the coordinate axes themselves. The
object moves under the action of the transformation while the reference axes
stay fixed. The six rotations are as follows:
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The matrices C1
6 , C2

6 , C3
6 , C4

6 , C5
6 , E express the rotational symmetry of any

hexagonal object with indistinguishable sides and corners.
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Fig. 1.4. Reflection through a vertical axis.

What about reflections? Reflection through an axis passing through A–D
leaves the snowflake invariant (Figure 1.4). Recall that we are considering a flat
snowflake and so all operations are in the plane of the paper. If we wanted to
consider the three-dimensional symmetries of a finite-thickness snowflake, then
we would have to include transformations in the z-direction, either reflecting
points between the front and back or rotating the object out of the plane of the
paper.

The reflection through A–D can be expressed as

[
x

y

]
=

[−1 0

0 1

] [
x̃

ỹ

]
. (1.3)

Another reflectional symmetry is through axis a–d, which splits the angle
between A–D and B–E as shown in Figure 1.5. Four other symmetry oper-
ations are: reflection through axis B–E , reflection through C–F and reflections
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Fig. 1.5. Reflection axes of a snowflake.


